Asymptotic Expansion of the Solutions to Time-Space Fractional Kuramoto-Sivashinsky Equations
نویسندگان
چکیده
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملTrivial Stationary Solutions to the Kuramoto-sivashinsky and Certain Nonlinear Elliptic Equations
subject to appropriate initial and boundary conditions has been introduced in [15],[16] and in [23],[24] in studying phase turbulence and the flame front propagation in combustion theory. In the absence of any a priori estimates for the solutions of the scalar equation (1), most authors find it more convenient, for the mathematical study, to consider the differential form of the equation for u ...
متن کاملAsymptotic estimates and stability analysis of Kuramoto-Sivashinsky type models
We first show asymptotic L bounds for a class of equations, which includes the Burger-Sivashinsly model for odd solutions with periodic boundary conditions. We consider the conditional stability of stationary solutions of Kuramoto-Sivashinsky equation in the periodic setting. We establish rigorously the general structure of the spectrum of the linearized operator. In addition, we show condition...
متن کاملexact solutions of the generalized kuramoto-sivashinsky equation
in this paper we obtain exact solutions of the generalized kuramoto-sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. the methods used to determine the exact solutions of the underlying equation are the lie group analysis and the simplest equation method. the solutions obtained are then plotted.
متن کاملMeromorphic traveling wave solutions of the Kuramoto–Sivashinsky equation
We determine all cases when there exists a meromorphic solution of the ODE νw + bw + μw + w/2 +A = 0. This equation describes traveling waves solutions of the KuramotoSivashinsky equation. It turns out that there are no other meromorphic solutions besides those explicit solutions found by Kuramoto and Kudryashov. The general method used in this paper, based on Nevanlinna theory, is applicable t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2016
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2016/4632163